Uncoupling oxidative/energy metabolism with low sub chronic doses of 3-nitropropionic acid or iodoacetate in vivo produces striatal cell damage
نویسندگان
چکیده
A variety of evidence suggests that the failure of cellular metabolism is one of the underlying causes of neurodegenerative diseases. For example, the inhibition of mitochondrial function produces a pattern of cellular pathology in the striatum that resembles that seen in Huntington's disease. However, neurons can also generate ATP through the glycolytic pathway. Recent work has suggested a direct interaction between mutated huntingtin and a key enzyme in the glycolytic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Yet little work has been gone into examination of the cellular pathology that results from the inhibition of this alternative energy source. Therefore, the aim of the present study is to characterize the cellular pathology that results in the striatum of mice after treatment with a toxin (iodoacete, IOA) that compromises anaerobic metabolism. This striatal pathology is compared to that produced by a widely studied blocker of mitochondrial function (3-nitropropionic acid, 3-NP). We found that low doses of either toxin resulted in significant pathology in the mouse striatum. Signs of apoptosis were observed in both experimental groups, although apoptosis triggered by IOA treatment was independent from caspase-3 activation. Importantly, each toxin appears to produce cellular damage through distinct mechanisms; only 3-NP generated clear evidence of oxidative stress as well as inhibition of endogenous antioxidants. Understanding the distinct pathological fingerprints of cell loss produced by blockade of oxidative and anaerobic metabolisms may give us insights into neurodegenerative diseases.
منابع مشابه
Striatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملStriatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملNeurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid.
An impairment of energy metabolism may underlie slow excitotoxic neuronal death in neurodegenerative diseases. We therefore examined the effects of intrastriatal, subacute systemic, or chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid (3-NP) in rats. Following intrastriatal injection 3-NP produced dose-dependent striatal lesions. Neurochemical and histologic evalu...
متن کاملDopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II
In neurodegenerative disorders associated with primary or secondary mitochondrial defects such as Huntington's disease (HD), cells of the striatum are particularly vulnerable to cell death, although the mechanisms by which this cell death is induced are unclear. Dopamine, found in high concentrations in the striatum, may play a role in striatal cell death. We show that in primary striatal cultu...
متن کاملInvolvement of superoxide in excitotoxicity and DNA fragmentation in striatal vulnerability in mice after treatment with the mitochondrial toxin, 3-nitropropionic acid.
Oxidative stress and excitotoxicity have been implicated in selective striatal vulnerability caused by the mitochondrial toxin, 3-nitropropionic acid (3-NP), which may simulate Huntington's disease in animals and humans. The detailed mechanism of the role of superoxide in striatal vulnerability induced by 3-NP is still unknown. The authors investigated oxidative cellular injury and DNA fragment...
متن کامل